

Ausgabe 06-2025

Eigenschaften	Nutzen	
Kompakte Bauweise	Platzsparende Aufstellung	
Keine Filterverbrauchsstoffe	Niedrige Betriebskosten	
Intergriertes Kratzband	Problemloser Austrag von Spänen, auch von Leichtmetall	
Universell einsetzbar für unterschiedliche Bearbeitungsverfahren, Werkstoffe, Kühlschmier- stoffe, Volumenströme und Reinheitsgrade	Einfache Auslegung und Planung	
Modularer Baukasten	Spezifische Anlage nach KundenanforderungKurze LieferzeitGute Ersatzteilverfügbarkeit	
Plug-and-Play durch universelle, digitale Schnittstellen	Schnelle Installation und Inbetriebnahme	
Erhältlich als Modulanlage oder Sonderanlage	Individuelle Wahlmöglichkeit mit Einfluss auf Preis, Lieferzeit und Wunschausführung	

Finsatzbereiche

KNOLL Vakuumrotationsfilter VRF sind Rückspülfilter zum Reinigen von Kühlschmierstoffen (KSS) spanabhebender Bearbeitungsverfahren.

- Verwendung als eigenständige Reinigungseinheit oder in Kombination mit Späneförderern (z.B. an Bearbeitungszentren)
- Lokaler (für eine Werkzeugmaschine) oder zentraler Einsatz (für mehrere Werkzeugmaschinen) möglich

Beschreibung

Filterprozess

- 1. Schmutzflüssigkeit strömt durch den Einlaufkasten in den Filter.
- 2. Die Filterpumpe saugt Schmutzflüssigkeit in das Innere der Filtertrommel.
- 3. Filtergewebe auf der Filtertrommel hält Schmutzpartikel beim Durchströmen zurück.
- 4. Die Schmutzpartikel bilden einen Filterkuchen, der auch kleinere Partikel abscheidet.
- 5. Die Filterpumpe fördert die gereinigte Flüssigkeit in den Tank.
- 6. Nieder- und Hochdruckpumpen versorgen die Werkzeugmaschine bedarfsgerecht mit gereinigtem KSS.

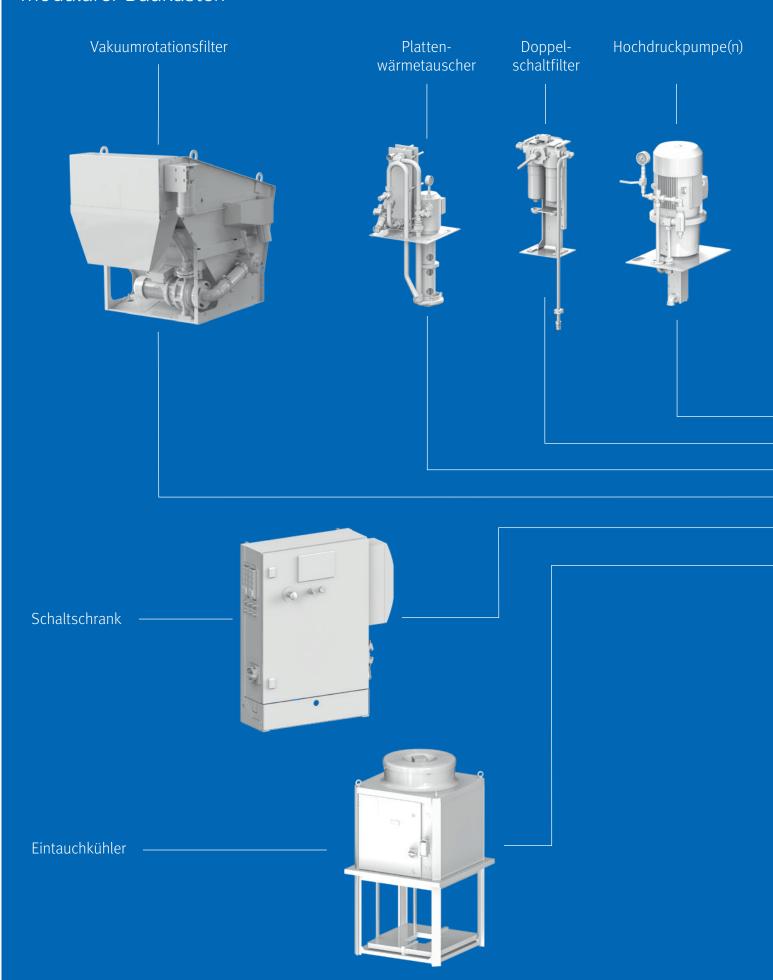
Regenerationsprozess

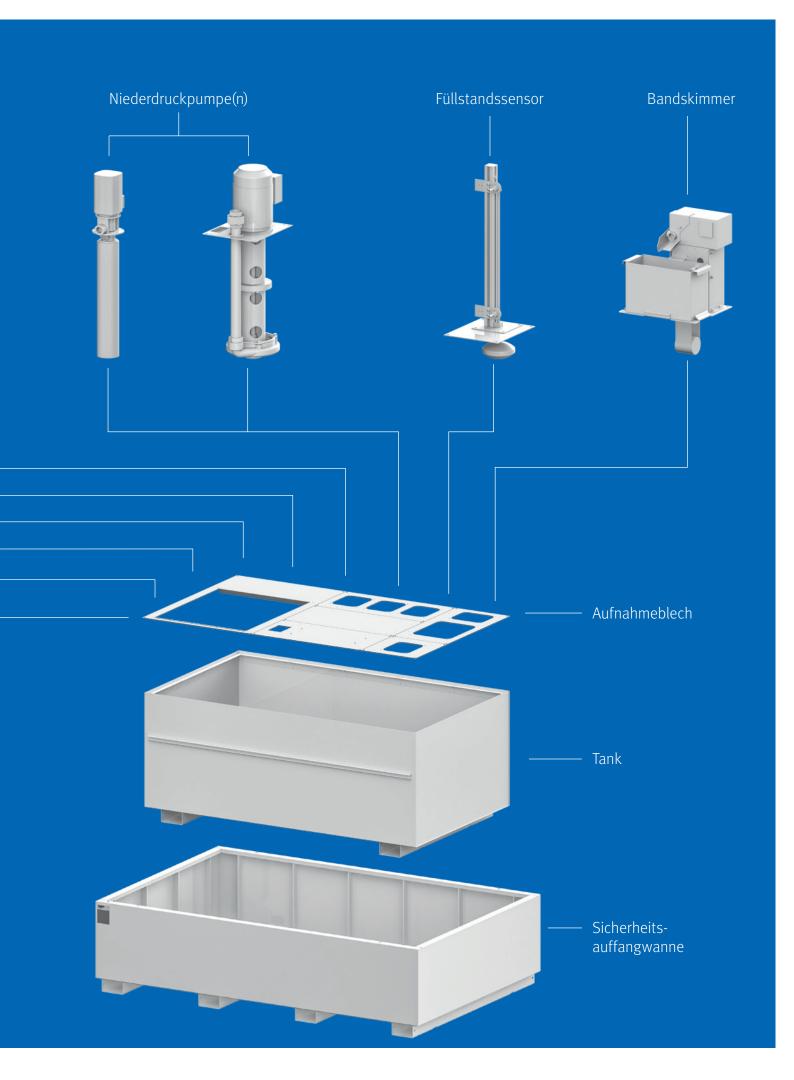
- 1. Der wachsende Filterkuchen erhöht den Strömungswiederstand, der Unterdruck steigt an.
- 2. Bei einem definierten Unterdruck dreht sich die Filtertrommel und die Rückspülpumpe löst den Filterkuchen.
- 3. Das Kratzband fördert den abgesunkenen Schlamm aus dem Filter in den Schlammbehälter.

Schema Vakuumrotationsfilter Bandantrieb Füllstandssensor Einlaufkasten Rückspülpumpe Filtertrommel Eintauchkühler bzw. Platten-Kratzband wärmetauscher Filterpumpe Versorgungspumpe(n) Füllstandssensor Schlammbehälter Tank Sicherheitsauffangwanne

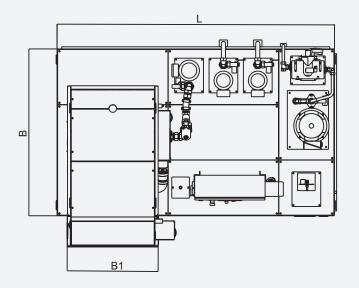
Grundausstattung

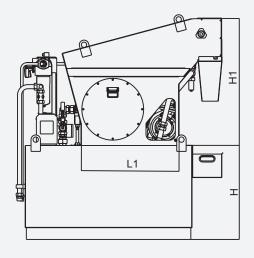
- Vakuumrotationsfilter
- Versorgungspumpe(n)


- Füllstandsmesstechnik
- Steuerung
- Tank



Leistungsstarke Elektrotechnik


Maßgeschneiderte Elektrotechnik mit modularem Aufbau – bestens vorbereitet auf Ihre Anwendung


Modularer Baukasten

Maße

Individuelle Filteranlage konfigurieren

1. Vakuumrotationsfilter auswählen

Тур	Filterleis	tung*	Einlauf	L1	B1	H1
	Emulsion**	Öl***	DN	[mm]	[mm]	[mm]
VRF 150	150	75	40	835	602	1100
VRF 300	300	150	40	835	772	1100
VRF 500	500	250	65	1095	1032	1255
VRF 700	700	350	80	1200	1032	1635

^{*} Spanabhebende Bearbeitung mit Standardgewebe

2. Pumpenbestückung und -ausführung auswählen

Maximale Anzahl Hochdruckpumpen	Maximale Anzahl Niederdruckpumpen
2	3
1	4
0	5

Pumpe 1-5	Hochdruck	Niederdruck	
Motorschaltung	direkt	Steckverbindung	Umrichter
Ventil	Vario	Standard	
Drucksensor	0		
Doppelschaltfilter	0		

^{**} $v = 1 \text{ mm}^2/\text{S}$

^{***} v= 10 mm²/S

3. Varianten auswählen

Filtergewebe	SQ 170 X160	SQ 130 X 160	SQ225 X 216	LAM-PET 40
Füllstandsanzeiger	optisch	digital		
Füllstandssensor	digital	analog		
Kühler	Beistellkühler	Eintauchkühler	Plattenwärmetauscher	
Regelung	absolute Temperatur	Raumtemperatur		
Bedienpanel	KTP 400	KTP 700	SmartConnect	
Schnittstellenanbindung	Gegenstecker	offenes Ende	kundenspezifisch	
BUS-Schnittstelle	keine	Profinet	Profibus	

 $\textbf{Hervorgehoben} = \texttt{empfohlener} \ \mathsf{Standard}$

4. Optionen auswählen

Bandskimmer	0
Magnetwalze als Vorabscheider	0
Füllstandsmesstechnik nach WHG	0
Sicherheitsauffangwanne nach WHG	0
Integrierte Hebeanlage (Schmutzmedium)	0

5. Tank auswählen

Filter	Tank	Abmessungen LxBxH [mm]	Volumen [l] ca.
VRF 150	RO	1431 x 950 x 800	800
VRF 150		1431 x 950 x 1000	1100
VRF 150	R1	1902 x 950 x 800	1100
VRF 150, VRF 300		1902 x 950 x 1000	1500
VRF 150, VRF 300 VRF 150, VRF 300	R2	2373 x 950 x 800 2373 x 950 x 1000	1400 1850
VRF 300	R3	1902 x 1421 x 800	1700
VRF 300, VRF 500		1902 x 1421 x 1000	2200
VRF 300, VRF 500	R4	2373 x 1421 x 800	2100
VRF 300, VRF 500		2373 x 1421 x 1000	2800
VRF 300, VRF 500	R5	2844 x 1421 x 800	2500
VRF 300, VRF 500, VRF 700		2844 x 1421 x 1000	3300
VRF 300, VRF 500 VRF 300 , VRF 500, VRF 700	R6	2373 x 1892 x 800 2373 x 1892 x 1000	2800 3700
VRF 300, VRF 500, VRF 700	R7	2844 x 1892 x 800	3350
VRF 300, VRF 500, VRF 700		2844 x 1892 x 1000	4400
VRF 150	Q1	1431 x 1421 x 800	1300
VRF 150, VRF 300		1431 x 1421 x 1000	1700
VRF 300, VRF 500	Q2	1902 x 1892 x 800	2200
VRF 300, VRF 500		1902 x 1892 x 1000	3000
VRF 500, VRF 700	Q3	2373 x 2363 x 800	3500
VRF 500, VRF 700		2373 x 2363 x 1000	4600

Hervorgehoben = Standardfilter für die Tankgröße

Vakuumrotationsfilter VRF

KNOLL Maschinenbau GmbH

Schwarzachstraße 20 DE-88348 Bad Saulgau Tel. +49 7581 2008-0 Fax +49 7581 2008-90140 info.itworks@knoll-mb.de www.knoll-mb.de

6. Komponenten mit Aufnahmeblechen auf dem Tank platzieren

Aufnahmebleche

$XS = 469 \times 469 \text{ mm}$

Komponenten (außer Vakuumrotationsfilter, Schaltschrank, Eintauchkühler, Hochdruckpumpe)

$S = 469 \times 940 \text{ mm}$

Komponenten (außer Vakuumrotationsfilter, Eintauchkühler)

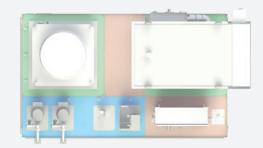
$M = 940 \times 940 \text{ mm}$

VRF 150, 300 Komponenten (außer Plattenwärmetauscher)

$L = 469 \times 1411 \text{ mm}$

Komponenten (außer Vakuumrotationsfilter, Eintauchkühler, Plattenwärmetauscher)

XL = 940 x 1411 mm


Komponenten (außer Eintauchkühler, Hochdruckpumpe, Plattenwärmetauscher)

$XXL = 1411 \times 1411 \text{ mm}$

VRF 500, 700 Komponenten (außer Eintauchkühler, Hochdruckpumpe, Plattenwärmetauscher)

Beispiele

