Properties

<table>
<thead>
<tr>
<th>Properties</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compact design</td>
<td>Space-saving setup</td>
</tr>
<tr>
<td>Good price-performance ratio</td>
<td>Short amortization time</td>
</tr>
<tr>
<td>Greater hydrostatic pressure as compared to flat-bed filters</td>
<td>Higher delivery rate, lower fleece consumption and better degree of purity</td>
</tr>
<tr>
<td>Sweeping strips and scraper</td>
<td>Problem-free discharge of chips, even light metal ones</td>
</tr>
<tr>
<td>Can be used universally for different working processes, materials, cooling lubricants, delivery rates and degrees of purity</td>
<td>Simple design and planning</td>
</tr>
</tbody>
</table>

Application

KNOLL compact filters KF are belt filters for cleaning cooling lubricants of machining processes
- Use as stand-alone cleaning unit or combined with chip conveyors (e.g. in machining centres)
- Local (for one machine tool) or central (for several machine tools) use possible

Description

Filtration process
1. Contaminated liquid flows from the side through the inlet box into the filter trough
2. The filter fleece holds back the contaminant particles during streaming
3. The contaminant particles form a filter cake, which separates even tiny dirt particles
4. The filtered fluid collects in the clean tank

Regeneration process
1. The growing filter cakes increase the flow resistance
2. The fluid level in the filter trough increases
3. The belt drive switches on at a defined level (alternatively: time-controlled)
4. The carrier belt transports a piece of clean filter fleece to the filter surface
5. The fluid level decreases again
6. A sludge container or a winding unit (Option) takes up the dirty filter fleece
Equipment

Belt drive ●
Circulating carrier belt ●
Filter fleece (original equipment) ●
Fleece shortage switch ●
Level measurement technology ●
Control system ●
Magnetic roller as pre-separator ○
Cooling lubricant tank system with supply pump(s) ○
Duplex switch filter ○
Tempering (cooling/heating) ○
Fleece roll arranged on the back (standard starting with KF 300) ○
Winding unit with drive and scraper ○
Sludge container ○
Filter fleece shortage early warning ○
Side panel ○

● Standard equipment
○ Option
Design example

Version A
Transverse filter layout →

Version A
Longitudinal filter layout ↓

Version B
Without winding unit
Version A

Compact filter KF

Transverse installation (KF 1000 - KF 2000)
Only separate transport possible

Version B

Compact filter KF

Longitudinal installation (preference KF 1000 - KF 2000)
Version C

Design example

Version C
Dimensions and technical data

<table>
<thead>
<tr>
<th>Type</th>
<th>Version</th>
<th>Filter capacity**/(l/min)</th>
<th>Emulsion DN</th>
<th>Oil DN</th>
<th>Inlet DN</th>
<th>Tank capacity(l)</th>
<th>Fleece- width</th>
<th>H</th>
<th>H1</th>
<th>B</th>
<th>B1</th>
<th>L</th>
<th>L1</th>
<th>L2</th>
</tr>
</thead>
<tbody>
<tr>
<td>KF 110*</td>
<td>A</td>
<td>110</td>
<td>40</td>
<td>25</td>
<td>700</td>
<td>390</td>
<td>650</td>
<td>740</td>
<td>1100</td>
<td>455</td>
<td>1450</td>
<td>780</td>
<td>415</td>
<td></td>
</tr>
<tr>
<td>KF 150*</td>
<td>A</td>
<td>150</td>
<td>60</td>
<td>25</td>
<td>900</td>
<td>540</td>
<td>700</td>
<td>740</td>
<td>1100</td>
<td>600</td>
<td>1600</td>
<td>780</td>
<td>415</td>
<td></td>
</tr>
<tr>
<td>KF 200*</td>
<td>A</td>
<td>200</td>
<td>90</td>
<td>25</td>
<td>1200</td>
<td>710</td>
<td>800</td>
<td>740</td>
<td>1100</td>
<td>780</td>
<td>1800</td>
<td>780</td>
<td>415</td>
<td></td>
</tr>
<tr>
<td>KF 300*</td>
<td>A</td>
<td>300</td>
<td>130</td>
<td>40</td>
<td>1800</td>
<td>540</td>
<td>800</td>
<td>1050</td>
<td>1350</td>
<td>600</td>
<td>2200</td>
<td>1200</td>
<td>450</td>
<td></td>
</tr>
<tr>
<td>KF 400*</td>
<td>A</td>
<td>400</td>
<td>175</td>
<td>40</td>
<td>2200</td>
<td>710</td>
<td>1000</td>
<td>1050</td>
<td>1350</td>
<td>780</td>
<td>2100</td>
<td>1200</td>
<td>450</td>
<td></td>
</tr>
<tr>
<td>KF 600*</td>
<td>A</td>
<td>600</td>
<td>250</td>
<td>40</td>
<td>3400</td>
<td>1020</td>
<td>1100</td>
<td>1050</td>
<td>1500</td>
<td>1100</td>
<td>2500</td>
<td>1200</td>
<td>450</td>
<td></td>
</tr>
<tr>
<td>KF 1000*</td>
<td>A</td>
<td>1000</td>
<td>450</td>
<td>100</td>
<td>6000</td>
<td>1020</td>
<td>1100</td>
<td>1240</td>
<td>1950</td>
<td>1100</td>
<td>3400</td>
<td>1495</td>
<td>450</td>
<td></td>
</tr>
<tr>
<td>KF 1500*</td>
<td>A</td>
<td>1500</td>
<td>750</td>
<td>100</td>
<td>9000</td>
<td>1520</td>
<td>1100</td>
<td>1240</td>
<td>1950</td>
<td>1605</td>
<td>5000</td>
<td>1495</td>
<td>450</td>
<td></td>
</tr>
<tr>
<td>KF 2000*</td>
<td>A</td>
<td>2000</td>
<td>1000</td>
<td>100</td>
<td>12000</td>
<td>2000</td>
<td>1100</td>
<td>1240</td>
<td>1950</td>
<td>2080</td>
<td>6800</td>
<td>1495</td>
<td>450</td>
<td></td>
</tr>
<tr>
<td>KF 110</td>
<td>B</td>
<td>110</td>
<td>40</td>
<td>25</td>
<td>480</td>
<td>390</td>
<td>760</td>
<td>800</td>
<td>900</td>
<td>900</td>
<td>780</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KF 150</td>
<td>B</td>
<td>150</td>
<td>60</td>
<td>25</td>
<td>480</td>
<td>540</td>
<td>760</td>
<td>800</td>
<td>900</td>
<td>600</td>
<td>900</td>
<td>780</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KF 150</td>
<td>C</td>
<td>150</td>
<td>60</td>
<td>25</td>
<td>650</td>
<td>540</td>
<td>760</td>
<td>800</td>
<td>1000</td>
<td>600</td>
<td>1100</td>
<td>780</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KF 200</td>
<td>C</td>
<td>200</td>
<td>90</td>
<td>25</td>
<td>650</td>
<td>710</td>
<td>760</td>
<td>800</td>
<td>1000</td>
<td>780</td>
<td>1100</td>
<td>780</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dimensions without units given in mm.
* KF 110 – KF 200, KF 1000 – KF 2000 fleece roll at the top.
** KF 110 – KF 2000, KF 1000 – KF 2000 fleece roll back (standard)
** Metal cutting with standard fleece
1 \(\nu = 1 \text{ mm}^2/\text{s} \)
2 \(\nu = 10 \text{ mm}^2/\text{s} \) (at operating temperature)
3 During longitudinal installation min. 2200 mm
Compact filter KF