

Issue 08-2019

Properties	Benefits					
Comment design	Connection and the					
Compact design	Space-saving setup					
Good price-performance ratio	Short amortization time					
Greater hydrostatic pressure as compared	Higher delivery rate and better degree of purity					
to flat-bed filters						
Sweeping strips and scraper	Problem-free discharge of chips, even light metal					
<u></u>	ones					
Endless filter belt	Reduction of consumable and disposal costs					
No carrying of cooling lubricant by the filter fleece	Reduction of costs for cooling lubricants					

Application

KNOLL compact filters KF-E are belt filters for cleaning cooling lubricants of machining processes

- Use as stand-alone cleaning unit or combined with chip conveyors (e.g. in machining centers)
- Suitable as pre-separator for downstream superfine filters
- Local (for one machine tool) or central (for several machine tools) use possible

Description

Filtration process

- 1. Contaminated liquid flows from the side through the inlet box into the filter trough
- 2. The filter fleece holds back the contaminant particles during streaming
- 3. The contaminant particles form a filter cake, which separates even tiny dirt particles
- 4. The filtered fluid collects in the clean tank

Regeneration process

- 1. The growing filter cakes increase the flow resistance
- 2. The fluid level in the filter trough increases
- 3. The belt drive switches on at a defined level (alternatively: time-controlled)
- 4. The carrier belt transports a piece of clean filter belt to the filter surface
- 5. The fluid level decreases again
- 6. A brush and back-flushing device clean the filter belt

Equipment

Belt drive	•
Circulating carrier belt	•
Endless filter belt	•
Brush-off device	•
Back flushing device	•
Fill level measuring technology i.a.w. WRA	•
Control system	•
Concentrate drying with vacuum pump	0
Magnetic roller as pre-separator	0
Cooling lubricant tank system with supply pump(s)	0
Duplex switch filter	0
Tempering (cooling/heating)	0
Sludge container	0
Side panel	0
Fleece holder for bath maintenance	0

• Standard equipment

 \bigcirc Option

KNOLL Maschinenbau GmbH

Schwarzachstraße 20 DE-88348 Bad Saulgau Tel. +49 7581 2008-0 Fax +49 7581 2008-90140 info.itworks@knoll-mb.de www.knoll-mb.com

Dimensions and technical data

Туре	Filter cap (l/m Emulsion¹	,	Inlet DN	Tank capacity (l)	Fleece width	Н	H1	В	B1	L	L1	L2
KF 150-E	150	40	25	900	540	700	740	1100	600	1600	780	430
KF 200-E	200	90	25	1200	710	800	740	1100	780	1800	780	430
KF 400-E	400	280	40	2200	710	1000	1045	1350	780	2100	1200	490
KF 600-E	600	400	40	3400	1020	1100	1045	1500	1100	2500	1200	490
KF 1000-E	1000	720	100	6000	1020	1100	1240	1950	1100	3400	1495	460
KF 1500-E	1500	1100	100	9000	1520	1100	1240	1950	1605	5000	1495	460
KF 2000-E	2000	1430	100	12000	2000	1100	1240	19503	2080	6800	1495	460

 $\label{lem:def:Dimensions} \mbox{ Dimensions without units given in } \mbox{ mm.}$

 $^{^{1}} v = 1 \text{ mm}^{2}/\text{s}$

 $^{^{2}} v = 10 \text{ mm}^{2}/\text{s}$ (at operating temperature)

 $^{^{\}rm 3}\,$ uring longitudinal installation min. 2200 mm